FINAL: INTRODUCTION TO ALGEBRAIC GEOMETRY

Date: 21st May 2021

The Total points is 105 and the maximum you can score is 100 points.

- (1) (15 points) Let R = k[x] be a polynomial ring over a field k and M = R[y]/(xy) be a R-module. For a prime ideals P of R, let M_P denote the localization of M with respect to the multiplicative set $R \setminus P$. Show that M_P is a free R_P -module for all but one prime ideal of R.
- (2) (20 points) Let *m* be a maximal ideal of the polynomial ring $\mathbb{Q}[x_1, \ldots, x_n]$. Show that the ring $\mathbb{Q}[x_1, \ldots, x_n]/m$ is a finite dimensional \mathbb{Q} -vector space. Is there an upper bound for the dimension of this vector space? Justify your answer.
- (3) (30 points) Let k be an algebraically closed field. Prove or disprove.
 - (a) Let X = Z(xy 1) in \mathbb{A}_k^2 . There is a surjective morphism of affine varieties from $X \to \mathbb{A}_k^1$.
 - (b) Let $f: X \to Y$ be a morphism of varieties over an algebraically closed field k induced from the inclusion of k-algebras $k[Y] \subset k[X]$. The morphism f is surjective.
- (4) (20 points) Let X be an algebraic subset of a projective space \mathbb{P}^3 over \mathbb{C} defined by the homogeneous polynomial $x_0^2 + x_1^2 + x_2^2 + x_3^2$. Show that X is a variety containing an affine open subset isomorphic to \mathbb{A}^2 ? Prove that X is isomorphic to \mathbb{P}^2 .
- (5) (20 points) Let U be an irreducible curve of degree $d \ge 1$ in $\mathbb{A}^2_{\mathbb{C}}$, i.e. U is the zero set of an irreducible polynomial in two variables of degree d. Let X be its closure in \mathbb{P}^2 . Let r be the number of points in X not in U. Show that r is between 1 and d. Also show by examples that the two bounds are attained.